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TABLE 1
Design Resonant Actual Resonant
Resonator Frequency (GHz) Frequency (GHz) 0 P,
(H 20.0 18.920 82 .9641
2) 20.0 19.194 149 .9667
3) 16.0 15.41 182 .9850
4) 12.0 11.505 201 19850
()] 20.0 18.885 77 9619
6) 20.0 19.173 128 9613
) 16.0 15.342 117 9745
®8) 20.0 17.897 57 .9195
(C)] 8.0 7.522 131 9773
(10) 16.0 13.457 19 .8641
an 20.0 16.406 13 .8144
Resonators
Shielded Lines

(1) #5S 10 mil Duroid
(2) #5L 10 mil Duroid
(3) #4S 10 mil CuFlon
(4) #3S 10 mil CuFlon
(short shield)
Unshielded Lines
(5) #58 10 mil Duroid

(6) #5L 10 mil Duroid
(7) #4S 10 mil Cuflon
(8) #5L 31 mil CuFlon
(9) #28 31 mil CuFlon
(10) #4S 31 mil CuFlon*
(11) #58 mil Cuflon*

*Low Q caused by poor metallization in the fabrication process.

on Duroid (¢, = 2.17) and CuFlon (¢, = 2.1) substrates of thick-
ness of 10 or 31 mils. The characteristic impedances of all lines
was 50 Q. Table I shows the results obtained for shielded and un-
shielded resonators. along with the design resonant frequency and
calculated Q. The resonators were manufactured by a metalization
process and the variation in measured @ for similar resonators is
believed to be due to the quality of the metalization. The design
and construction of the resonators was carried out at the NASA
Lewis Research Center [10] as were the measurements.

The calculated Q’s listed in this table are in good agreement with
estimated Qs determined from the bandwidth of the |T',|? curve at
the 6 dB return loss points.

The approach presented here offers several advantages over other
techniques commonly used to determine the @ of a microstrip
resonator. They are:

1) p. and Q are determined fom the fitted |T,,|? curve directly.

2) Using seven measured data points allows more of the avail-
able information to be used to determine the Q.

3) Curve fitting of the data reduces measurement induced error.

4) A dispersion model is introduced so that the effects of dis-
persion are included.

5) An accurately established reference plane is not required in
making the measurements.

6) No detailed model of the coupling gap is needed. This ap-
proach is suitable for analyzing resonators using asymmetric cou-
pling gaps, where S;; # S, with only slight modification.
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Conformal Mapping Analyses of Microstrips with
Circular and Elliptical Cross-Sections

M. A. Martens, R. W. Brown, and E. M. Haacke

Abstract—A new conformal transformation is derived in terms of a
Schwarz-Christoffel transformation involving elliptic integrals of the
first and third kind. This mapping function is used to give exact solu-
tions for TEM excitations of microstrips and coupled microstrips with
circular and elliptical cross-sections. Using these maps, the uniformity
of the TEM mode magnetic field inside an elliptical slotted tube trans-
mission line is investigated.

[. INTRODUCTION

Due to the interest in nonplanar microstriplines with circular and
elliptical cross-sections [1]-[7] it is certainly useful if one can find
an analytic solution for the fields produced in these geometries.
Some of the methods suggested in the literature involve either in-
finite series [1], [3]. [7] or iterations [5]. In contrast to these meth-
ods, the conformal mapping technique, if successful, provides an
exact closed-form solution. Although conformal mapping has been
applied to this class of problems [2], [4]. [6], the geometries are
mapped into a finite region of a domain where the conductors are
planar and then one or more of the transverse dimensions of the
conductors are assumed to extend to infinity.

It is the purpose of this paper to present a complete set of con-
formal transformations that are used to analyze the TEM modes of
the circular and elliptical geometries shown 1n Fig. 1. No assump-
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Fig. 1. Elliptical geometry. The inner elliptical cylinder has an eccentric-
ity €, and is at potential & = 0. The outer elliptical arcs lie on an ellipse
with eccentricity .. For the elliptical coupled microstrips, the upper arc is
at potential & = 1 while the lower arc is at & = +1. For the elliptical
microstriplines the lower arc is absent. The circular geometries are similar
to the elliptical geometries (the inner cylinder becomes circular with a ra-
dius 7, and the outer arcs lie on a circle of radius r.) except that the arcs
may lie either inside or outside the grounded cylinder.

,

n

Fig. 2. One quadrant of the elliptical slotted tube transmission line. The
outer elliptical arc is at potential & = 1. By symmetry, the y axis is a
streamline and the x axis is at = 0. (The solid (dashed) lines represent
equipotential lines (streamlines).

tion is made about an infinite extension of any segment in the cross
section. To accomplish this, a new transformation involving in-
complete elliptic integrals of the first and third kind is derived. This
new mapping, along with other familiar mapping functions, pro-
vides a means of transforming the problematic geometries into a
region where the complex potential can be found by inspection.
There is also interest in the use of slotted tube resonators (STR)
in Nuclear Magnetic Resonance (NMR) applications [8]. The STR
is part of an 1f system that provides a sinusoidally time varying
magnetic field with a spatially uniform magnitude. The degree of
uniformity of this magnetic field is important since the spatial
variation is a key to understanding image response. It is, therefore,
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Fig. 3. Initial regions in the mapping sequence. Solid (dashed) lines rep-
resent equipotential (stream) lines. (a) The w-plane. The rectangular region
is bounded by two lines at potential ® = 0 and @ = 1 and two streamlines.
(b) The {-plane. Region consists of upper right quadrant. (¢) The ¢,-plane.
Region consists of upper half-plane. (d) The z,-plane. Region consists of
upper half-plane.

useful to find an analytical solution for the magnetic field profile.
In [8], an STR with circular geometry is considered. By using an
STR with elliptical rather than circular cross-section, it is possible
to improve the uniformity of the field. Using the same conformal
maps developed for the striplines, we solve for the TEM fields of
the elliptical STR shown in Fig. 2. Using these solutions we in-
vestigate the uniformity of the magnetic field as a function of ec-
centricity and conductor angle.

II. CoMMON TRANSFORMATIONS

To discuss the transformations necessary to map the sequence of
regions shown in Fig. 3, four real parameters a, b, c, and d are
introduced and related to the geometries later. The starting region
is the rectangular portion of the w-plane shown in Fig. 3(a). K(n)
and K(n') are complete elliptic integrals of the first kind [9] with
parameters n2 = (b — ¢)/(b — d) and n”® = 1 — n’. The two
sides of the rectangle at O and K(n) have potentials & = 0 and &
= 1 while the top and bottom are Neumann boundaries. By in-
spection, we see that the complex potential in the w-plane is given
by @ = @ + i¥ = w/K(n) where lines with constant ®(¥) are
equipotential (streamlines).

The first transformation in the mapping sequence is the familiar
Jacobi elliptic function [10] { = sn (w, n), which maps the region
in the w-plane to the upper right quadrant of the {-plane shown in
Fig. 3(b).

At this point, the mapping sequence splits into two directions
with the final geometry deciding which path is chosen. These two
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branches are labeled the even and odd modes for reasons that be-
come obvious later in the paper.

For the odd mode, the simple transformation ¢, = b — (b —
o) [¢*]* maps the {-quadrant into the upper half of the f,-plane
shown in Fig. 3(c).

For the even mode, the mapping sequence starts in the w-plane
and uses the ¢ = sn (w, n) transform as before, but in this case n
=(b"—c")/(b" — d') where

_bla - d)
C@-b"

, _ cla—-4d) .
c—(a_c),d—d. )]

!

The simple transformationt’ = b’ — (' — ¢') [£*]? then maps the
{-quadrant into the upper half of the ¢"-plane. (The ¢'-plane is not
shown but is the same as the 7,-plane shown in Fig. 3(c) with a, b,
¢, d replaced by a’, b', ¢', d’.)

The bilinear transform

!

ar

:t’-—d+a @

te
is used next to map the upper half of the ¢’-plane into the upper
half of the z,-plane shown in Fig. 3(d). The purpose of this trans-
formation is to map the Dirichlet boundary condition from ' to
+ o0 in the ¢'-plane onto the line segment from b to a in the ¢,-plane.
As a result, the segment from a@ to +oo in the 7,-plane becomes a
streamline or Neumann boundary condition.

III. SCHWARZ-CHRISTOFFEL TRANSFORM

The transformation developed here, a special case of the
Schwarz—-Christoffel transformation [10], maps the 7, ,-plane onto
a semi-infinite strip in the f, ,-plane. For our particular case the
mapping function is given by

. =1SI tde 3)
O 2h Ja-ne - -0t —d)

where ¢ is either ¢, or 7,. Note that the segment from a to o is
mapped to the line Re { f, .} = = /2.
By making the substitution [9]

_ A /(a—C)(t—b)
4 =¢ + iy = sin —(a—b)(t—c) 4)

equation (3) can be expressed as

f= % [(@? — oD, o, k) + «*F(S, k)] 5)
where
at = po—2 ®

and F(3, k) and II(8, o?, k) are incomplete elliptic functions of the
first and third kind. Because ¢ is complex, these functions are com-
plex in general. Using relations from [9] and [11], we can separate
elliptic integrals of complex argument into real and imaginary parts.

A
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(a) )

Fig. 4 fplane. (a) f,-plane. The left side is a streamline, the segment at
h is at potential $ = 1, and the bottom and right side are at potential ¢ =
0. (b) f,-plane. Same as f,-plane exept that the right is a streamline.

The result is

F, k) = F0, k) + iF(p, k') ®

O, o k) = 06, «®, k) + il

2

o

AT DI (8 B 3

-2 fan'T (10)
where
k=1~ kY
A=’ - aH@? - kD) a1
I — i\ sin @ tan p s &

1 — o2sin® & + o sin 6 tan p cos 81 — k2 sin® &
(12)

and the real angles 6 and p are determined as follows: x = cot* 4
ts the positive root of

x2 —[cot? ¢ + k*sinh® Y csc®? ¢ — k?]x — k% cott ¢ =0

13)
and then p comes from

k*tan? p = tan® ¢ cot®> § — 1. 14)

Using [9] the parameters a, b, ¢, and d can be related to geom-
etry of the f-plane via the following equations,

(@a— b —d) =1 (15)
(b — o>, k) + cKk) = = /2 (16)
b — Il — «, k'), + akk') = h (17)
b - OIE', a2, k) + cFO', k) — tan™} <_b:d> =y (18
with
.y e —d)
6’ = sin —b(c 2 19

where /2 and v are as shown in Fig. 4.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 9, SEPTEMBER 1992

1IV. CIRCULAR GEOMETRY

The mapping sequences for the circular geometries are com-
pleted by using the exponential function. Due to the symmetry of
the geometries considered it is necessary to map only one half or
one quarter of the plane. In all of the cases considered the y-axis
of Fig. 1 is a streamline and the coupled microstrip geometries
have additional symmetry about the x-axis.

Microstrip: The transformation for the circular microstripline
(Fig. 1 without the lower circular arc), is given by z =
e "= 7/D_ This transformation maps lines of constant Im { f,}
onto circular arcs and lines of constant Re { f,} onto radial lines.
Thus, in the z-plane, the radius of the grounded cylinder is 1, the
half-angle of the outer condition is § = 2+, and the radius of the
outer conductor is 7, = ¢?*. In this case only one half of the z-plane
is mapped.

Coupled Microstrips: For the circular coupled microstrips (Fig.
1), the map is given by z = ¢ %~ 7/? where the even and odd
TEM miodes are mapped using the f,- and f,-planes, respectively.
The radius of the grounded cylinderis 1, 8 = v, and 7, = ¢”.

Shielded Transmission Line: For the shielded circular trans-
mission line (Fig. 1 with r, < r,) the map is given by z =
e"J~o= /2 This map is similar to the coupled microstrip case cx-
cept that the circular arcs are now inside the grounded cylinder.
The even and odd TEM modes are mapped using the f, and
fo-planes, respectively. The radius of the grounded cylinder is 1, 3
=~v,and r, = e ",

V. ELLipTiICAL GEOMETRY

The elliptical geometries are mapped using the sine function and,
as in the circular case, we use the symmetry of the problem and
map only one half or one quarter of the plane. Note that there is
no solution for the elliptical shielded transmission line.

Microstrip: The elliptical microstripline shown (Fig. 1 without
the lower elliptical arc) is mapped via z = sin [2(f, + ig)]. This
transformation maps lines of constant Im { f,} onto ellipses and
lines of constant Re { f,} onto hyperbolae. The parameters &, g,
and v are related to the eccentricity of the inner ellipse, ¢, = sech
(2g), the eccentricity of the conductor, e, = sech (2( g + h)), and
the conductor half-angle, tan 8 = V1 — €Z tan (27).

Coupled Microstrips: For the coupled microstrips (Fig. 1) the
map is z = sin [(f, , + ig)] where the even and odd TEM modes
are mapped using f,- and f,-plane, respectively. The eccentricities
and the angles are related as above without the factors of 2. A
special case of this map, using the f,-plane and g = 0, is the el-
liptical slotted tube shown in Fig. 2.

VI. CAPACITANCE OF MICROSTRIPS

Since the capacitance and inductance per unit length do not
change under a conformal mapping transformation, these quantities
are calculated in the w-plane. The capacitance is given simply by
C = eK(n')/K(n) and the inductance by L = uK(n) /K(n') where
the value of the parameter n depends on the geometry of interest.
For a particular geometry, s and vy easily determined. The set of
four equations 15-18 are then used to solve for the four parameters
a, b, ¢, and d (and therefore n).

Using a computer to numerically solve these equations, we were
able to find solutions for the cases in which # > 0.1. However, as
h becomes small (<0.1) it becomes difficult to numerically solve
this set of equations. The difficulty is caused by the singularity in
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Fig. 5. MSE x 100 for a circular region with a radius of 0.6. Left axis is
r. and the bottom axis is the conductor angle v.

the elliptic integral of the third kind as o> approaches 1. The case
in which & becomes small cotresponds to microstrips in which the
conducting strip is relatively close to the inner grounded cylinder.
The capacitance calculations for these cases are handled accurately
by the works of the authors mentioned in the introduction.

VII. UntrorMiITY OF STR

We now return to the problem of maximizing the uniformity of
the magnetic field inside an STR. We are interested in the magnetic
field in some region inside of the elliptical slotted tube in Fig. 2.
To quantify the uniformity we use the mean square error (MSE) as

defined by
1 ISS =
MSE = — |- B —
8 B,,\/A |

where ﬁ,, =B,% = B(7 = 0) is the ideal uniform field, and 4 is
the area of the region integrated over.

Given a fixed region of interest we wish to find the eccentricity
and angle that minimize the MSE. As an example this calculation
is done using a circular region with a radius of 0.6. The minor
radius of the elliptical conductor was fixed at 1 while the conductor
angle and the ratio of the minor axis to the major axis (r,) were
varied. The results of this calculation are shown in Fig. 5.

As is seen in this plot, the flatter and wider the conductors be-
come, the lower the MSE. Since it is impractical to have infinitely
wide conductors some limits must be placed on the widths of the
conductors. Consider, for instance, constraining the conductor to
a half-width of 1 in the x direction. In this case the circular region
has a minimum MSE of 0.0092 when the elliptical conductor has
v = 50.7° and r, = 0.58 (or eccentricity = 0.81). As a compari-
son, a circular conductor with v = 45° has an MSE of 0.029 and
a set of parallel plates with half-width of 1 has an MSE of 0.033.

=11
S

| da (20)
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Analysis of an N-Port Consisting of a Radial Cavity
and E-Plane Coupled Rectangular Waveguides

Marek E. Bialkowski

Abstract—An analysis of an n-port including a radial or coaxial cav-
ity and E-plane coupled rectangular waveguides is presented. A non-
standard field matching technique which exploits both circular and
rectangular boundaries, is used to determine the scattering matrix pa-
rameters of the n-port. Validity of the analysis is verified through com-
parison with an alternative analysis and experiment.

INTRODUCTION

Microwave networks consisting of a number of rectangular
waveguides coupled in the E-plane to a radial or coaxial cavity find
many useful applications in microwave engineering. A well known
rat-race circuit consisting of four waveguides coupled to a coaxial
cavity is a typical example.

Recently, some interest has been shown in E-plane coupled
waveguide five ports [1]-[4]. It has been demonstrated that these
five-ports can be used as power combiners [4] or as building blocks
for six-port network analysers [1], [3].

So far, the design of E-plane coupled waveguide n-ports has been
based on experiment (i.e. [1]. [4]). The only theoretical analysis
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of an E-plane waveguide n-port has been presented in [2]. The
analysis was restricted to the symmetrical five-port junction and
was based on the least-squares boundary residual method
(LSBRM). A good agreement with experiment was noted.

In order to set equations for unknown modal expansion coeffi-
cients the authors in [1] used the continuity conditions for tangen-
tial components of the fields only along the circular contour of the
cavity. Since equations for unknown expansion coeflicients for the
cavity region were inseparable from those of the rectangular
waveguide region, the size of the resulting matrix was large.

In this paper an alternative analysis based on a field matching
technique for an E-plane n-port is described. In difference to the
method presented in [1] both rectangular and circular boundaries
are exploited in setting up the continuity conditions for the tangen-
tial field components. This approach leads to separation of modal
expansion coefficients for the waveguide region from those of the
cavity region. In this way a considerable reduction of the size of
the matrix involved in solving equations for unknown modal ex-
pansion coefficients is achieved.

The solution presented here exhibits good convergence and is
easily implemented on an IBM PC or compatible.

ANALYSIS

The structure of the analyzed n-port circuit is shown in Fig. 1.

The n-port consists of N radially positioned rectangular wave-
guides which are connected in the E-plane to a radial or coaxial
cavity. The positions of the rectangular guides with respect to the
radial or coaxial cavity are given by angles ®,, i =1, - - - , N.

From the designers point of view, the parameters of interest are
the scattering matrix coefficients of the n-port.

Assuming dominant mode operation of the individual wave-
guides, the determination of the scattering parameters requires the
n-times solving of an electromagnetic problem, in which one of the
waveguides is connected to the generator and the remaining wave-
guides are match-terminated. There are a number of ways to solve
this formulated EM problem. The method chosen here is based on
the non-standard field matching technique which exploits both cir-
cular and rectangular natural boundaries. associated with the ge-
ometry of the N-port.

Field Matching Solution

It is sufficient to present the method for the case when waveguide
No. 1 is excited and the remaining waveguides are match-termi-
nated.

Under the condition of the dominant mode operation, the rectan-
gular waveguides support free propagation of the TE,, mode. The
other modes are excited at the inter-junctions between rectangular
waveguides and the cavity, but quickly decay over distance. Due
to the form of excitation the waveguide and cavity modes combine
in such a way that the y-component of the electric field is zero. In
this case the total field in all the regions of the n-port can be con-
sidered as the radial TE. Its components can be derived from the
knowledge of the y-component of the magnetic field.

The y-component of the magnetic field in the waveguides can be
written in the Cartesian system of coordinates in the form (1):

Tmig

_]I'% [e —Toz et ¢ )
Hl = —— 6, — 2 A L
v I To, T A A cos (k,,x) T, sin (k,,y)

(6]

0018-9480/92%$03.00 © 1992 IEEE



